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A method is proposed for obtaining regular solutions of the boundary-layer 
equations near a point of vanishing skin friction for steady incompressible laminar 
two-dimensional flow. The boundary -layer equations are integrated numerically 
in the usual way until the separation point is approached; then the displacement 
thickness is prescribed as a regular function of the distance along the surface, 
leaving the pressure gradient to be calculated from the consequent solution. 
Numerical solutions are obtained with reversed flow and shallow separation 
bubbles inside the boundary layer without the occurrence of a singularity at the 
separation point. 

1. Introduction 
It is well-known that the flow field past a solid body can be divided into a 

boundary layer and an inviscid irrotational flow outside it. The latter is deter- 
mined not by the solid surface itself but by a surface displaced into the fluid 
through a distance Sly the ‘displacement thickness’ of the boundary layer. For 
very large Reynolds numbers R the boundary-layer thickness before separation 
is of order h ( A  = R-9) and so 8, is of order h and in the limit of infinite Reynolds 
number the displacement surface up to separation is coincident with the body 
so that (as is the usual procedure) the pressure distribution may be taken from the 
potential flow about the body and then the boundary layer can be calculated 
using ‘ stretched ’ variables. In  this solution the ‘stretched’ displacement thick- 
ness 8l (& = &,/A) is of order unity. 

Whenever the pressure gradient along the surface becomes adverse (positive 
gradient) the skin friction decreases until eventually it becomes zero and the 
forward flow separates from the wall. Beyond the point of separation the flow 
direction is reversed near the wall and either a small bubble is formed inside the 
boundary layer or the boundary layer thickens considerably producing a large 
bubble or a thick wake. The flow downstream of separation may influence the 
pressure distribution upstream and thus the position of the separation point. 
However, so far no satisfactory model of the flow downstream of separation under 
these conditions has been found and so this influence is extremely difficult to 
assess. In  many practical cases this upstream influence of separation on the 
pressure distribution is small and for the forward part of the body the pressure 
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distribution obtained from the potential flow past the given body is adequate. 
Near separation this is no longer true and an alternative method will be proposed. 

After separation the boundary -layer thickness may remain of order A, leading 
to the formation of a shallow bubble inside the boundary layer or (as is often 
observed experimentally) it may become of order unity. In  the former case the 
upstream effect on the pressure distribution is very small, whereas in the latter 
case it becomes important; furthermore, & will change from being of order unity 
before separation to of order h-l after separation, which, in the limit as h tends 
to zero, means that 8, will become infinite after separation. The boundary-layer 
equations will, of course, no longer be valid after separation in this case, since the 
approximations made in forming the boundary-layer equations assume that 8, 
is of order unity, and it may be expected that a singularity will be present in the 
boundary-layer equations a t  the separation point. 

All numerical computations in which any attempt has been made to obtain 
good accuracy, at  and near separation, have so far met with considerable diffi- 
culty, and this also has led to the conclusion that the boundary-layer equations 
for laminar incompressible flow do indeed have a singularity at the separation 
point. The nature of this singularity has been studied by Goldstein (1948), 
Stewartson (1958), Terrill (1960) and Catherall, Stewartson & Williams (1965), 
and solutions valid in the neighbourhood of the separation point have been 
obtained which give a singularity in the skin friction at  the point of separation. 

In  this paper we try to make allowance for the effect on the pressure distribu- 
tion of a small bubble inside the boundary layer. We assume that the displace- 
ment thickness behaves in a regular prescribed fashion in the region of the 
separation point and the pressure distribution is calculated in this region at  the 
same time as the boundary-layer calculation is performed. This leads to a 
numerical solution which does not show any signs of a singular behaviour at 
separation. 

In  3 2 the Navier-Stokes equations for two-dimensional incompressible flow 
are written in terms of a stream function and the vorticity, andin 3 3 a transforma- 
tion is introduced in which the independent variables are simply connected to the 
inviscid stream function and velocity potential. This system is most convenient 
when considering higher approximations in boundary -layer theory, but for this 
paper, since only the limit of infinite Reynolds number is considered, the system 
is equivalent to Prandtl’s boundary -layer equations. The equivalence is demon- 
strated in 33. Stagnation-point flow is considered in $4 and the numerical 
integration of the equations? is briefly described in 0 5. Various examples are 
given in 0 6, the first one being merely an illustrative one of the flow past a parabola 
to check the numerical method, and then the technique described in the last 
paragraph is employed to integrate past separation. An example is also given of 
a shallow bubble contained inside the boundary layer, no difficulty being en- 
countered at either separation or reattachment. It should be noted, though, that 
the solution after separation is not uniquely determined unless boundary condi- 
tions are supplied downstream, the physical reason being that disturbances can 

A more complete description of the numerical method, including a series solution for 
the stagnation-point region, is contained in an unpublished R.A.E. report. 
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propagate upstream once reversed flow has set in. However, for the latter case 
of a shallow bubble it was concluded that all possible solutions lay within a range 
narrower than the accuracy of the calculation. 

The technique will only work, of course, for regions where the boundary-layer 
thickness remains of order A. Shallow bubbles within the boundary layer do 
occur; for example, they are often present when a shock wave interacts with the 
boundary layer, and the possibility also remains that the strong thickening of 
the boundary layer after separation may sometimes occur some finite distance 
downstream of the separation point. If this were the case the present method 
would still enable one to integrate the boundary-layer equations past the 
separation point. 

2. Equations of motion and boundary conditions 

Navier-Stokes equations are (in non-dimensional form) 
In Cartesian co-ordinates ( x ,  y) the two-dimensional steady incompressible 

au av -+- = 0, 
ax ay 

where the x and y components of velocity u and v have been non-dimensionalized 
with respect to the undisturbed velocity Urn, the pressure p with respect to pU$ 
( p  = density) and all lengths with respect to a typical body dimension (such as 
the nose radius) L. h is connected to the Reynolds number R through 

R = pU, L / p  h-', (4) 
where p is the coe&cient of viscosity. 

Equation (3) is satisfied by introducing a stream function q?, where 

u = a$/ay, v = -a#/ax. ( 5 )  

(6) 

Eliminating p between ( I )  and (2) and introducing the vorticity w, where 

- w = (aupy)  - (aqax),  

the Navier-Stokes equations may be reduced to two equations : 

The boundary conditions are the ' no-slip ' conditions 

zL=v=o 
along the body y = yB(x),  and 

u = l ,  v = o  
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at large distances from the body and outside the wake, the undisturbed stream 
being assumed to be flowing in the x-direction. 

For large Reynolds number, large parts of the flow field are not affected by 
viscosity and can be described by the Euler equations for inviscid flow. The 
velocity components U ,  V of the inviscid flow past the displacement surface X, 
(figure 1) can be defined in terms of a stream function x and velocity potential #: 

When we come to take the limit of infinite Reynolds number, this distinction 
between defining the inviscid flow to  be about the displacement surface rather 
than the body surface S,  disappears. 

FIGURE 1. Physical plane showing body surface SB and displacement surface S, 
before limit h ---f 0 taken. 

3. Change of variables 
Orthogonal co-ordinates X and Y are introduced connected to q5 and x by 

# + ix = $ZZ, 
where 2 = X + i Y ,  so that 

q5 = $[X2- Y2], x = S Y .  

The implied transformation from (x,y) space to (S, Y )  space is 

2 = Z(Z) ,  (14) 

say, where x = x + iy, and the inviscid complex velocity, U - i V = q eG7, where 
q is the magnitude, and T represents the direction, of the velocity vector, is 
given by 

The Jacobian J of the transformation, which is the ratio between elements of 
area in the z- and Z-planes is 

(16) J = Idz/d212 = (X2+ Yz)/p2. 



Integration of the boundary-layer equations 167 

In  the 2-plane the streamlines of the inviscid flow are (from the second equation 
in (13)) X Y = const. ; 

the displacement surface is Y = 0, and the body is Y = Y,(X) < 0 (figure 2). 
X and Y are measured along and perpendicular to the displacement surface in 
the 2-plane. 

Displacement surface Y=O 

FIUURE 2. Inviscid flow picture mapped onto 2-plane before limit h-2 0 taken. 

Under this transformation we find 

(xv+ q2 yu)dy , i  xu- Y V d X -  ax = 
P2 

It may be noted here that since U - i V is an analytic function of 2 for Y 2 0, 
U and V are not independent. In fact it is only necessary to prescribe U ,  say, 
along Y = 0 for both U and V to be defined throughout the whole of the region 
Y 2 0, from Cauchy’s integral theorem. 

In this system the Navier-Stokes equations (7)  and (8) become 

The variable Y is now ‘ stretched ’ in an analogous way to Prandtl’s ‘ stretching ’ 
of the direction perpendicular to the wall. We write 

and 

x=g, Y = hg; 

$ = A& + H ) ,  w = &yA. 

Note here that we assume that the stagnation streamline coincides with the line 
= 0, the inviscid stagnation streamline. This will only be true for symmetrical 
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flows (for non-symmetrical flows the inviscid stagnation streamline is deformed 
by the displacement effect due to the viscous layer and the stagnation point may 
be shifted). 

The first term in the expression for 11. in (22) represents the inviscid solution 
4 = x and the second term h[H = A$* the viscous modification to the inviscid 
flow, so that if we make H decay as we move from the body into the main stream 
the solution will merge into the external potential flow solution. 

Writing equations (19) and (20) in terms of these new variables and letting 
h+O (i.e. R+m) we have 

The body itself is given by y = ~ ~ ( 6 )  and the ‘no slip’ conditions are 
$ = a$/aq = 0 on the body. Thus the boundary conditions for equations (23), (24) 
are 

H = - y B ,  aH/@ = - 1 on q = y B ,  (25 )  

and both H and O decay exponentially for large y. 
These may be considered as the equations for the first term in an expansion 

of H in powers of A, following Van Dyke (1962, 1964), or alternatively they may 
be considered as the equations for infinite Reynolds number flow. 

Before attempting to solve (23) and (24) we need to know the function J which 
depends on the velocity q = q(& h y )  of the flow past S,. We may expand q in a 
Taylor series in the q-direction, and since it is known that for smooth bodies 
(aq/a(hy))7=o = (aq/aY),,, is of order 1 we may write 

4 = 0) +O(h) ,  (26) 

and from (16), (21) and (26) we have 

As mentioned in the introduction, this co-ordinate system, since it is based on 
the inviscid flow about the displacement surface, is most convenient when con- 
sidering higher-order effects in boundary-layer theory, where the function H is 
expanded in a power series in h and the inviscid and viscous parts of the flow are 
made to merge into each other simply by making H decay exponentially with 
distance from the surface. However, for the limiting case of infinite Reynolds 
number which has been taken equations (23) and (24) are the equivalent of 
Prandtl’s boundary-layer equations, which can be obtained from (23) and (24) 
by use of the following transformation : 

I 
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where J is given by (27). The governing equations reduce to 

with boundary conditions 

In this formulation the unknown function yB7 which is connected to the dis- 
placement thickness ( - yB = G,/hJH) does not occur explicitly and it is doubtful 
whether integration past the separation point by specifying the displacement 
thickness could be achieved from this system. 

Another reason why the new system is preferable to the one above is that in 
a numerical computation the numerical solution near the upper end of the range, 
i.e. for large y” can be seriously in error for the (28)-(30) system. This difficulty has 
been reported by Smith & Clutter (1962). The reason for this is that the first term 
in (29) a$ az$ dq 

agazaag d x  
N q - +exponentially small terms ___ 

in the exact solution, and the first terms on the left- and right-hand sides of (29) 
cancel leaving exponentially small terms. However, in a numerical computation, 
since each quantity will be stored to an accuracy of, say, five significant figures, 
this accuracy will be completely lost when two quantities of almost equal magni- 
tude are subtracted. For example, when the difference between the two terms 
should be of order 10-4, accuracy of only one or two significant figures will be 
retained, while for larger values of y” the result can be orders of magnitude in 
error. The effect of this error on the other two terms in (29) can be appreciable 
and lead to great difficulties when trying to get convergence of the numerical 
solution for large values of y” (Smith & Clutter 1962). 

One more advantage of the (23), (24) formulation is that the boundary-layer 
thickness remains of the same order of magnitude when using the variable y as 
we go downstream whereas when using the (55, y”) variables the boundary layer 
grows roughly as $4, so that in the numerical computation extra points have 
continually to be fed in at the upper end of the range. 

Another systemwhichwould seem tohavethe same advantages as the (23), (24) 
system can be obtained from (28) and (29) by writing 

X* = 2,  ZJ* = (q/2)*ij7 $ = (?q)h($*+y*-A*), (32) 

where the dimensionless scaled displacement thickness & = (bq)$A*. This leads 
to a third-order equation for $* and q5* decays exponentially for large y*. This 
system has been programmed and various computations have been performed, 
including runs past separation and reattachment. The separation program, 
however, was rather more involved than in the present system. 



170 D.  Catherall and K .  W.  Mangler 

4. Stagnation point 
We first consider the flow past a parabola whose equation in the x-plane is 

y2 = 22+ 1. (33) 

Here, the typical length L mentioned in $ 2  by which all lengths are non- 
dimensionalized has been taken to be the nose radius of the parabola. 

The transformation to the 2-plane is given by 

Hence 

and 

z = $(Z+ i ) 2 .  

dz1d.Z = Z+i ,  

from (16). Thus 
J ( X ,  0) = 1 +x2, @(X,0) = x2+ .... 

(34) 

(35) 

(36) 

Near the stagnation point of a symmetrical body the flow will be like that of 
a parabola near its stagnation point and we may write 

J = 1 +  .... (37) 

The solution of (23) and (24) may now be found for small values of 6. We 
assume that 

H + y  = P ( y ) +  ... 
and from (24), with J = 1 + . .., we have 

(39) 
- 

--w = P”(q)+ ..., 
where the primes denote differentiation with respect to q. Substituting these 
expressions in (23) we obtain a fourth-order differential equation for F(y):  

p i v  + FF“ - F ’ p  = 0, 

which may be written in the more familiar form 

[P’” + FF” + 1 - F’]‘ = 0, (40) 

the well-known equation for the stagnation-point profile. The boundary condi- 
tions are, however, slightly different from the usual ones: they are in fact 

F = H ’ = O  for ( q - q B ) = O  

P = q +exponentially small terms 
at the wall, and 

for large 7, since H must decay exponentially. The (non-dimensional) displace- 
ment thickness &, = Ah, is given by 

A, = 1; (1 -P’ )dy  = -yB. (43) 
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5. Numerical integration of the equations 
Equation (23) can be treated as a parabolic equation for G. If written in the 

form 

it may be seen that it resembles the simplest parabolic equation, the heat- 
conduction equation, except that the coefficient of aij/at  is non-constant, and 
there are also terms containing lower-order derivations added to the right-hand 
side. 

For the numerical integration of (44) it  is convenient to make a further trans- 
formation in order that the wall will pass through a mesh point, so avoiding the 
need to use an interpolation formula when applying the boundary conditions. 
We write 

(45) 

where A = A([)  = - q B ( [ )  and ,,, is a conveniently large constant chosen such 
that when 7 = 7, both W and H are less than some small constant, say The 
integration in the ,-direction will now conveniently range from ?j = 0 to ?j = 1.  

Under this transformation (23) and (24) become 

where A' denotes dA/d<; and 
1 a 2 8  

- J i j  = _ _ _ ~  
A+ro a ? j 2 '  

The boundary conditions (from (25)) are 

- A aB 
H = -  - - 1  when ? j=  0, 

Ai-7,' aij 
_ -  

and that and 55 are exponentially small for large ?j. 

aH/a?j = H = i j  = 0 when 

This latter condition is replaced by 
- - 

?j = 1 

for the numerical solution. 
Equation (47) may be integrated twice to give 

= J(A+ro) /Tm (?f-rl)'(E[,rl)drP 

or 8 = J(a+ll,)S_ (?j-rJ'(t,rJdr1 
1 

'I 
for the numerical solution. 

An implicit difference scheme similar to the Crank-Nicolson (1947) method 
was used and the difference problem solved by a matrix-factorization method as 
used by Leigh (1955). This difference scheme may be shown to be unconditionally 
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stable when applied to the heat-conduction equation and it is expected that it 
will be stable for all choices of step-lengths for the more complicated equation 
(46). In  fact no instability was discovered up to the separation point. The trunca- 
tion errors involved in this scheme are O(Ak2) + 0(AT2), where A[ and A? are the 
step-lengths in the <- and 7-directions respectively. Owing to the non-linear 
nature of (46) an iteration is necessary, the simplest way being to treat the 
coefficients of a(<G)/a< and als/a+j as known, solve the difference equation derived 
from (46) supplemented by the second of the conditions (48) applied to (51), and 
then obtain better approximations to these coefficients by calculating B from 
(51) and A from the first condition of (48) applied to (51). The whole process is 
repeated until the values obtained from two successive iterations agree to within 
some stipulated accuracy. 

To begin the integration from the stagnation point, equation (40) with 
boundary conditions (41) and (42) must be integrated and it was found necessary 
to use a series solution, similar to Gortler’s (1957) series, in order to find the 
solution at some small distance from the stagnation point before using the 
marching technique described above. 

6.1. 
6. Examples Parabola 

This example is included to demonstrate and check the method. 

at the nose. The transformation formulae were given in 9 4 and we take 
A parabolic displacement surface was considered with unit radius of curvature 

J = [ 2 + ( l + h ~ ) 2 ,  ( 5 2 )  

J = 1 + < 2 .  (53) 

from (35) and (21). If infinite Reynolds number is taken, ( 5 2 )  becomes 

With this expression for J the equations were integrated as in 8 5 from < = 0.2 
to < = 5 ,  using the series expansion to obtain the profile a t  5 = 0.2. 

Figure 3 shows values of A,q and -hwo as functions of c(0 < [ < 5 ) .  
A ( =  -7 &)) is related to the (non-dimensional) displacement thickness 8, by 
the expression 

- hw,  ( = - <zS(<, rB) )  the ‘scaled ’ value of the vorticity on the body, is related to 
the skin friction rto by 

A = &/(hJ+). (54) 

(55 )  
-hw  1 7, 

O - h p U % ’  

and the magnitude of the velocity of the potential flow along S, is 

q = t/Ja 
from (16) and (21) with q = 0. 

Far downstream we may write, for large 5, 
J t2, 

and look for a solution of the form 

(56) 

(57) 

H + q  = F(q) ,  -G = F“/[2  (58)  
from (24), where the primes denote differentiation with respect to q. 
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Substituting these expressions into (23) and integrating once we arrive at  the 

(59) 

F = P‘ = 0 for 7 = qB = qB(oo) (60) 

and F = 7 + exponentially small terms (61) 

well-known Blasius equation 

with boundary conditions 
P”’+FF” = 0, 

for large 91. When (59) is solved with these boundary conditions we find 

- ~ B ( c Q )  = A(w) * 1.2167. 

The asymptotic values of q and wo are, from (56), (57) and (58), unity and zero 
respectively. 

With h = 0 the body and displacement surface are coincident in the physical 
(x, y)-plane, but if we assign a finite, but small, value to h the results from the 

1 
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t 
A 

0-5 

- 
Asymptotic A 
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0 2 5  7 

n 

FIGURE 3. The flow parameters A, q and - hw, for the case of a parabolic displacement surface. 
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(6,  q)-plane can be interpreted in the physical plane to give a picture for a flow at 
large but finite Reynolds number. With a non-zero value for h equations (23) and 
(24) do not give an exact solution of the Navier-Stokes equations but can be 
considered to give a first approximation for small A. 

4 -  

+ 
2nv 

Nose radii 
Displacement surface : 1 
Body : 0845 
A= 0.1 ( R  = 100) 

r 4  

x = &p - (1 + hy)7 
7 

0 2 4 6 8 10 12 
X 

FIGURE 4. Body giving rise to a parabolic displacement surface for h = 0.1. 

Figure 4 shows the results obtained for a parabolic displacement surface for 
R = 100. The broken line is another parabola with the same focus as the dis- 
placement surface, and with which the body is asymptotically coincident far 
downstream. This figure is meant as an illustration rather than as an exact 
mathematical result. 

6.2. A flow containing an adverse pressure gradient 

The following distribution was assumed for q : 

4 = Qo + Ql(C - Eo) - a& - f ; O Y ,  (62) 

where qT > 0. For simplicity the initial profile was obtained assuming a parabolic 
displacement surface up to 6 = go = 0.2 and then the values of qo and q1 chosen 
so that at  5 = to both q and dq/dc were continuous, qz may be chosen so as to give 
a velocity maximum at any required value of 6. 

We note here that if f is replaced by a!E and pl by ap, where a! is a constant, 
equations (23) and (24) and the value of J from (27) remain unchanged. This 
means that after a computation has been performed using a specified set of values 
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for J the results may be interpreted in a number of ways. For instance 5 and q 
could be scaled to give a maximum value for q of any value we please. However, 
if any scaling is performed the results will no longer correspond to  a displacement 
surface having unit radius of curvature at the nose. 

FIGURE 5. Computation from stagnation p o i n t (  q prescribed). 

Values of A and - hw, for the specified q distribution (62) up to 6 = 2.6 are 
shown in figure 5.  To relate these curves to the physical plane a grid showing the 
arc length along S, is included in figure 5. The arc length s is calculated from 

as2 = J(dX2+dY2) ,  (63) 

ds = (EM6 (64) 

which, for h = 0 (from (16) and (21)) becomes 

Soon after 6 = 2-6 the iteration procedure used in the computation began to 
fail. The convergence criterion that was used for the iteration scheme was that 
if the values of A obtained from two successive iterations are Ap and AP+l then 
the solution is considered to have converged when 

lAP-Ap+l I < c, (65) 

where C is some small constant less than the truncation error. There would seem 
to be a choice as to which of the boundary conditions (48) is to be applied to (51) 
to supplement the difference equation obtained from (46) in order to find w (the 
other boundary condition of (48) is used with (51) to determine A from the values 
of w obtained). Near the stagnation point it was found that if the f i s t  of (48) was 
used to find w then the iterations diverged, whereas if the second was used, suc- 
cessive values of Ap approached the true value rapidly in a monotonic fashion. 
However, after E = 2.6 successive values of Ap approached the true value more 
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and more slowly. This means that it is very difficult to ascertain the true value 
of A, since if Ap and AP+l both lie on the same side of the true value, then (65) 
could be satisfied while AP and Ap+l are both far from the true value. Strictly 
speaking (65) will be an insufficient condition for convergence everywhere if the 
true value is approached monotonically. However, in areas where the convergence 
was fast, various values of C were fed in and results compared. With a value of 
C of after about six iterations. 
With C = and respectively, two and four more iterations were needed, 
but the final values were less than 10-5 greater than their values after the sixth 
iteration. The true value could only be obtained by making C tend to zero, but 
it seems very unlikely that this would improve much on the value found with 
C = Hence these values were accepted in the area of rapid convergence. 
The value of (AP+l- API for a fixed p became smaller as the separation point 
(where w,, = 0) was approached and so the problem of convergence of the itera- 
tion scheme becomes more acute as we approach the separation point. 

Using the first of the conditions (48) to find w away from the stagnation point 
it was found that the values of A from successive iterations oscillated about the 
true value, a much more satisfactory state of affairs, since when (65) is satisfied 
we know that both AP and Ap+l are within C of the true value. However, near 
separation successive values of A failed to converge. The other method (using the 
second of the conditions (48) to find w )  also failed to converge near separation. 
Prior to this A had begun to increase more rapidly and it is thought that the 
presence in equation (46) of the term A'< probably accounts for the instability 
of the iteration scheme, since if, during the iteration, A' becomes very large this 
term will dominate and change the nature of the equation. Consequently a new 
scheme was sought. 

successive values agreed to within 

6.3. Integration past the separation point 

A glance at  equations (46) and (47) shows that both J and A occur in the equa- 
tions. Up to now J ( = c2/q2) has been specified and A has remained to be calculated 
along with f I  and w. However, the present method allows for the roles of J and A 
to be reversed so that A can be specified, leaving J to be determined from the 
integration. 

On reflexion, this seems a reasonable technique since it now allows the potential 
flow to be modified, through q, whereas usually q is calculated on the assumption 
that there is no separation, or at least that there is no sudden thickening of the 
boundary layer, and is expected to be unaffected by separation. This could 
possibly account for the singularity usually encountered at the separation point, 
the suggestion being that the singularity is not inherent in the boundary-layer 
equations but is introduced when the outer boundary condition in the form of 
a specified q is expected to behave as though there were no separation. 

The first case tried was to  write 

A = do + dl(5 - 51) + a,(<- 5J2, (66) 

where d, > 0 and t1 is some starting point, taken as 2.6. do and d, were chosen 
to make A and dA/dc continuous at 6 = 2.6. Three values of d, were tried, repre- 
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sented by the curves A, B and C in figure 6. The corresponding values of q and 
- hw, obtained from the integration are also plotted on figure 6. In  each case no 
difficulty was encountered in passing through separation. 

0.2 

0 1  

3” 
.i 

I 

0 

26  2.7 2.8 2.9 3.0 

5 = 4 2 4 )  

FIGURE 6. A, q and -hw,  curves for three cases round separation (A prescribed). 

It may be noted here that although the values of q obtained differ in these 
three cases this does not necessarily mean that the bodies (or rather the displace- 
ment surfaces) giving rise to these flows differ in this region. A knowledge of 
q along the whole length of S, is necessary before the body shape corresponding 
to it can be calculated. If we take the logarithm of the inviscid complex velocity 
q e-ir along S,, the real and imaginary parts of this analytic function are linked, 
and by Cauchy’s theorem r(l,O), which gives the body shape, is given by 

so that although at  a particular value of $ the values of q obtained from A, B and C 
may differ, the values of r at that point can be identical provided the values of q 
differ in some suitable fashion in some other region. In  other words, three bodies 
could be identical up to any given station, but have differing q distributions up 
to there because the bodies differ downstream of this station. 

The streamline pattern for the case C is shown in figure 7. Because of the 
co-ordinate system chosen, the displacement surface appears in this figure as 
the line 7 = 0, and the body as a curve. For comparison some streamlines of the 
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inviscid flow are included (the broken lines). At 7 = 2 the viscous and inviscid 
flows differ only in the third significant figure (i.e. H 5 O( 10-2)). The integration 
was actually performed up to 7 = 4, where the viscous term H was down to 
about 

Also included in figure 7 are the lines a$/&/ = 0 and w = 0, representing the 
locus of points at which the component of the velocity normal (in the (<, v)-plane) 
to the isobars is respectively zero and has its maximum negative value. 

1 

-- -- 
@/A= 2 

1 -0 
0.8 
0 6  
0.4 

0.2 
7 

002 
0 - 001 
- 002 
- 003 

- 1  

a+ljaq = o 

I) - 
w = o  

2 9  
- 3  

2.6 2.7 2.8 

f 
FIGURE 7. Flow pattern near separation point (A prescribed). 

-, Streamlines of the viscous flow; ---, streamlines of the inviscid flow. 

Velocity profiles just upstream and just downstream of separation are shown in 
figure 8. It may be seen that the velocity within the reversed-flow region is 
relatively small. 

After about 5 = 2.9 difficulty was again encountered with the iteration. The 
tolerance (C in (65)) was put at and it was found that at 5 = 2-95 successive 
values of J in the iteration would not converge to within this tolerance, although 
they would converge to within a larger tolerance (lob2). This is possibly to be 
expected, since the region of reversed flow should really be integrated in the 
negative <-direction with boundary conditions provided from downstream. This 
means that there is no unique solution if the integration is performed in the 
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FIGURE 8. Velocity profiles near separation point. 
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FIGURE 9. Flow pattern round attached bubble-( A prescribed). 
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positive g-direction, although we can say that all the possible solutions at 
< = 2.95 appear to lie within 10-2 of each other, and at 6 = 2-9 within of 
each other. An alternative might be to ‘guide’ the solution by considering it as 
a perturbation of a known self-similar solution far downstream. Of course, if 
there is no steady-flow solution after separation this instability in the iteration 
scheme may point to the onset of instability in the flow downstream of separation. 

6.4. Integration past separation and reattachment 

Next a convex/concave A-distribution was fed in of the form 

A = a,+al(<-L;,> + ~ 2 f ~ - < l ) ~ - - a 3 ( < - < 1 ) ~ ,  

where ak > 0 and t1 is some stai-ting point, taken as 2-6. a, and a, were chosen 
to make A and dAld5 continuous at 6 = 2.6. 

2.6 28 3.0 3.2 3.4 

5 
FIGURE 10. A, q and -Aw, curves for attached bubble. 

With this distribution separation and reattachment were obtained, the stream- 
line pattern being shown in figure 9 and q and - hw, curves in figure 10. In this 
case the iterations a t  each step converged to within the desired tolerance, 10-4, 
so that, although, as mentioned above, the solution found cannot be considered 
to be the unique solution, all the possible solutions appear to lie within 10-4 of 
each other. 

As a check the integration was repeated using three different step-lengths b in 
the g-direction: b = 0-05, 0.025 and 0-0125. For the latter two step-lengths the 
values of q obtained agreed to within and the values for b = 0.05 and 
b = 0-025 (or 0.0125) to within Similar agreement was found between the 
values of - ho, obtained. 
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6.5. Discussion of flow near a separation point 

In  the ( X ,  Y)-plane (see $3)  we assume that the flow near the separation point 
can be represented by regular expansions in powers of X and Y.  The wall may 
be represented by the line Y + a x  = 0, and the separating streamline by the line 

/ 
/ *=  Const. 

Direction of 
,pressure gradient 

I 

I p =  Const. 

FIGURE 11. Schematic picture of the isobar, separating streamline, pressure-gradient direc- 
tion and zero vorticity lines at the separation point. (a)  ( X ,  Y)-plane; ( b )  (6 ,  T)-plane. 

Y + b X  = 0, where the separation point is taken as the origin (X = 0, Y = 0) 
(figure 11 (a) ) .  Thus, since $ has a double zero at  the surface 

@ =  C(Y+&Y) ' (Y+bX)+ ... (69) 

near the separation point. a,  b and c are constants. When the co-ordinate Y is 
'stretched' the equivalent relation to (69) in the ([,q)-plane can be obtained by 
scaling the various quantities in (69) thus: 

$=A+,  Y = AT, X = 6, a = ha, b = A6, c = F/h2, (70) 
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resulting in the relationship 

(figure 11 ( b ) ) .  

separation are given by 
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(71) 
- 
$b = C(y+Zt)2(y+b5)+. . .  

From (20), (70) and (71) the leading terms for small h for the vorticity near 

- JAW = 2C[37 + (6 + 2Z) 61 + . . . . 
Hence the slope of the curve w = 0 at the separation point is 

d y l d t  = - +(5+ 2Z). (72) 

d7ld.g = -a,  (73) 

and d y l d t  = -5,  (74) 

The slopes of the surface and separating streamline at  the separation point are 

respectively. 
A computation using small step-lengths was performed in the neighbourhood 

of the separation point for the case considered in (6.4) above. From the slopes 
of the surface and separating streamline values of Z and 6 were obtained from 
(73) and (74). Within the accuracy of the computation the value of the slope of 
the line o = 0 from (72) agreed with the value found from the computation. 
This shows that a regular expansion a t  separation fits the numerical results and 
therefore gives some justification for the assumption of a regular behaviour of 
the flow near separation. 

Legendre (1955) shows (using the full Navier-Stokes equations) that a t  the 
surface of a body the direction of the pressure gradient is parallel to the direction 
of the lines of constant vorticity (constant w )  and in addition, at a regular 
separation point, the tangent of the angle between this direction and the surface 
is one-third of the tangent of the angle between the separating streamline and the 
surface. These results can be derived from (69). They do not contradict the 
relations given above for the plane of the stretched variables, since angles are 
distorted by the stretching. 

This paper is Crown copywright, reproduced with the permission of the 
Controller, Her Majesty’s Stationery Office. 
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